Transformation of the released asbestos, carbon fibers and carbon nanotubes from composite materials and the changes of their potential health impacts
نویسندگان
چکیده
Composite materials with fibrous reinforcement often provide superior mechanical, thermal, electrical and optical properties than the matrix. Asbestos, carbon fibers and carbon nanotubes (CNTs) have been widely used in composites with profound impacts not only on technology and economy but also on human health and environment. A large number of studies have been dedicated to the release of fibrous particles from composites. Here we focus on the transformation of the fibrous fillers after their release, especially the change of the properties essential for the health impacts. Asbestos fibers exist in a large number of products and the end-of-the-life treatment of asbestos-containing materials poses potential risks. Thermal treatment can transform asbestos to non-hazardous phase which provides opportunities of safe disposal of asbestos-containing materials by incineration, but challenges still exist. Carbon fibers with diameters in the range of 5-10 μm are not considered to be respirable, however, during the release process from composites, the carbon fibers may be split along the fiber axis, generating smaller and respirable fibers. CNTs may be exposed on the surface of the composites or released as free standing fibers, which have lengths shorter than the original ones. CNTs have high thermal stability and may be exposed after thermal treatment of the composites and still keep their structural integrity. Due to the transformation of the fibrous fillers during the release process, their toxicity may be significantly different from the virgin fibers, which should be taken into account in the risk assessment of fiber-containing composites.
منابع مشابه
Carbon nanotubes and pleural damage: perspectives of nanosafety in the light of asbestos experience.
Carbon nanotubes are molecular-scale one-dimensional manufactured materials which display several potential applications in engineering and materials science. Burgeoning evidence demonstrates that carbon nanotubes and asbestos share comparable physical properties. Therefore carbon nanotubes might display toxic effects and the extent of the toxicity is more specifically directed to lung and pleu...
متن کاملCarbon nanotubes reinforced electrospun chitosan nanocomposite coating on anodized AZ31 magnesium alloy
Chitosan based nanofibers containing carbon nanotubes were applied on AZ31 magnesium alloy via electrospinning. The magnesium substrate was initially anodized in a NaOH solution in order to improve the adhesion between the coating and substrate. Electrospinning parameters were optimized and homogenous nanofibers composite coatings were produced. Addition of carbon nanotubes reduced the size of ...
متن کاملELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY
A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs) composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate. In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of...
متن کاملPreparation of Solid Phase Microextraction (SPME) Probes through Polyaniline Multiwalled Carbon Nanotubes (PANI/MWCNTs) Coating for the Extraction of Palmitic Acid and Oleic Acid in Organic Solvents
A fiber coating from polyaniline (PANI) was electrochemically prepared and employed for Solid phase micreoextraction (SPME). The PANI film was directly electrodeposited on the platinum wire surface using cyclic voltametry (CV) technique. The same method was applied for the preparation of SPME fiber coated by polyaniline multiwalled carbon nanotubes (PANI/MWCNTs) composite. The concentration of ...
متن کاملPreparation of Solid Phase Microextraction (SPME) Probes through Polyaniline Multiwalled Carbon Nanotubes (PANI/MWCNTs) Coating for the Extraction of Palmitic Acid and Oleic Acid in Organic Solvents
A fiber coating from polyaniline (PANI) was electrochemically prepared and employed for Solid phase micreoextraction (SPME). The PANI film was directly electrodeposited on the platinum wire surface using cyclic voltametry (CV) technique. The same method was applied for the preparation of SPME fiber coated by polyaniline multiwalled carbon nanotubes (PANI/MWCNTs) composite. The concentration of ...
متن کامل